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The development of the theory of flow of.gaaee, and espeo-
ially of the theory of alr resistance, affords an illuetratiop'
of how prdéreea may be retarded by a false theory, especially
when advocated by a scholar of world renown. I refer to New-
ton's theery of air resistance. We have no right eo-reproaoh
this great man on this acocount. His service was very credlta-
ble for those times, even though he was less fortunate in this
than in other matters.

Newton's law furnishes the right expression, that the alr
resistance l1s proportional to the square of the veloclty of the
surface presented by the objeot and to the density of the alr,
but it glves quite_ﬁpsatiefaotory results regarding the depend-
ence of the alr reeietance on the shape of the objeot. Aoccord-
ing to Newton'e view, the ailr oconsisted of small partioles,
which mutually repelled each other as far as possible and, in
the event of equilibrium, remained at rest with reference to
sach other. If a sollid body was moved through the alr, the par-
tioles which were fﬁought to be very small in comparison with
the distances between them, were struck eingly by the moving
body, the resistance being the combined effect of all these col-

Iisions. It remained an open question as to whether the laws

* Frgg "Egitschrift des Vereines Deutscher Ingenieure," September
1.
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_sure veriavion ocours, there will be no appreciable okangee in

volume, wnich may accordingly be entirely neglected, in order tc

" 8implify the theoretiocal oconsiderations. Volumetrio changes in

moving air exert an appreclable modifying influence on the mo-
tion, when the veloclty is comparable with the velooity of
gound. At 1/10 tke velooity of sbund, the varietions are only
about one-helf of 1%, and are therefore entirely negligible.

That the air particles do not fly about at random-aﬁéng
each other, but combine in an airflow, is explalined according to
the kinetic theory of gases, by the assumption that, though
the individual moleocules are verfectly free to move, they often
collide and exchange momenta. The resultant motion, whioh has
the mean velus of the 1r£egu1ar individual motions, accoi&ingly
constitﬁtea the flow of a fluild.

Pressure from any source is transmitted in all direotions
and it is therafore ‘nadmiasible to caloulate the resistance of
a body by simply adding the reaistances of the individuel parts,
sinoce these parts exert a mutual influence on each other and
the resistance of the combined parts differs from that of the
pﬁrts taken separately. The wind pressure on & roof therefore
depends largely on the shape of the bullding it covers.

The theory of the flow of liquids, hydrodynamios, (begin-
ning in the mlddle of the eighteenth century with L. Euler and
D. Bernouilll), was developed under Helmholtz, Kirohhoff, Lord
Kelvin, eto., to a high degree of perfection, although in only
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ons direotion, whioh seemed to offer but little of usé to thg
rractical men and greatly shook his confldence through contri-
" dictory results. Thus, for example, & body mﬁving unifornly in
& fluild origlinally aﬁ rest was supposed to experience no re-—
slstance in the dirsotlon of the motlon, whiloh was contrary to
all observed facts, GCaloulations were made on the basls of the
ao-called ideal 1liquid, a constant-volume fluid witaout viscosity,
because the allowance for the visoosity (whose influence on the
individual partiocles wes well known) made the a@sloulstion too
difficult. 8Sinoes the effeots of viscoslty in flulds were so
slight in comparison with the effects of inertla, this method
of caloulation ssemed to be justified.

The abova-iientioned contradictory result of the absence of
resistance was found first while investigating the flow around
& ball and eubsequently wﬁs shown to hold strictly true feor the
1deal fluid for all todies without sharp edges. Tae hydrodyn~mt
ics of the ideal fluid falled howerer in the provlem of the re-~
slstance of actual fluids, but a more thorough investigation
demonstrated that in case where the actual reslstance was very
small on acoount of the sultable shape of the todiles, the theo-
retloal prinoiples were satisfied in large measure. The shapes
of bogiaa with small reslstance are of the greatest practical
importance in tks oonstruoction of airships and airplanes. Sya-
tematio experiments in aerodynamic lgboratoriea during the last
decade have gradually developed the best shapes and shown that
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these stares, sxcepting for the ever-present skir friotion, en-
atle the practioel realizatlon of the theory of ro reasistancs.
The fact that the flow both divides in front of the body and
closes again beaind it, in accordance with the theory, oonsti-
tutes She mair charaocterlistic of the motion of the ldeal fiuild
about & body. The reosistance of the body of an airship, =ocori-
ing to laboratory experiments, is between 1/30 and 1,/35 of ths
resistance of a flat disk having the same diamster as the max~
lrmam section of the airship. The small oircle in Fig. 1 repre-~
sents the disk whloch would offer the same resistence as the air-
ship. Thls resistance may be regarded as dus sntirsly to skin
friotion.

Before goirg furtker into details, I will mention briefly
the means of presentation and the most important thsorems of
hydrodynanios. The stats of flow for any glven instant is knomm
when the pressure a8 well as the magnitude and direotion of the
veloclty are given for every point. The veloolty is crdinarily
designated bty the three components u. v and w, aoccording to
the axes of a right-angled sygtem of coordinates. The whole mc-
tion is known when u, v, w, and also the pressure p are gliv-
en a9 funotions of the three-space coordinates and of the time.
For the dliagrammatic representation of the flows, use is made
chiefly of "streamlines” showing the direotion of all vparts of
the flow. The streamlines can be calculated from the above-

mentioned funodtions.
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The typloal task of theoretical hydrodynamios is now to He-
termine, for any glvern conditions on the boundsries of the flu~
1d (for example, for a prescribed motion of solid bodies through
1t), the funotions u, v, w and p, for the whole space cocupied
b& the fluid. For thls purpose use 1ls made of two types of
conditlona:

1) The so-oalled contimuity conditilon, that in every
snall portion of spaoce just as much fluld flowa in as out, which
consequently preserves the oconstancy of ﬁolume;

3) A dynamlo condition, that the resulting momentum of
a portion of the fluid, which oomes from the d:ffsrences in
pressure'and_from any other forces aoting on the portion, equals
the mass of that porilon itimes its accelsration. The methods
for ocarrying out ths caloulation cannot be given here in detall,
but the following varagraphs will contain indications ooncern-
ing them. On the otter hand, several imporiant laws will be
stated here without demonstration. They are very simple laws
whioh hold-gpqd'for only the 1ldeal fluld, and they furnlsh the
real reason why the ideal fluid can be treatsd mathematioaliy
80 muoh.moiq easlly than actual flulds.

One very important oonoepfion for the motion of the 1deal
fluid is ‘the "line integral of the veloolty." If we imagine

. instead of the "veloocity f£ield," a "foroe field" such that each

veloolty (of given megnitude and directlon) is replaced by a
force of corresponding magnitude and the same direotion, then
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the line integral of this force wlll represent the work perform—_
ed by the force in moving a unit mass along the given line. The
line integral .of the velooclity is obtained when each individual
part of the path is multiplied by the ocomponents of the veloolty
felling in the direotion of the path and the products are ﬁll
added together. In the theory Qf the foroe field, the caze ls
considered when the work done 1ln moving a mass from a point A
+t0 a point B 18 the same for all paths. In this case, when
the point A is stationary, the work dons between A and any
point B, and whioh acoordingly depends only on tiae loocation of

_ tte point B, 1is caliled the potential at the point B and the

whole foroe fileld i1s called a potential field. The same cass
also oocurs In the motion of fluids. The value of the line in-
tegral, taken from a stationary starting point, is called the
veloclty potential of tha motion and the velocity field is call-
ed the potentlal field. The velocity is then given, just as tkte
force was - given in the other ocase, both in magnitude and direc-
tion, by the\fall:of the potential. Much is gained by the intro-
ductior of the rotential, for since the veloolty oomponents can
be deduced from the potential, it is then necessary to determine
orly one funotior inastead of thrae.. Even the pressure in the
oase of potential motion maf be obtained by a simple formula.
Concerning the line integral of the velocity thereliﬁ an
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important law discovered by Lord Kelvin (8ir William Thomson),
namely, that in an ideal fluld for any given oclosed line waich

=18 oontlimiously formed out of the same fluid partloles, the

line integral can not change 1ts value with the lapse of time.

We will immediaetely make an important aprplloation of thié
law, If, at any instant, ﬁhe whole fluid is at rest, then every'
line integral in 1t has the valus zero and must therefore, ac-
cording to Loxrd Zelvin, retaln the value zero for all time.

If a oclosed lins is laid through the =bove-uentioned points

A and B, 1t may Le easlly demonstrated that the assertion that
the line integral disaprears for the olosed path, is identloeal
with ti:e assertion that in both dirsections. around the right

or around the laft, from A to B, +thses lins integral has the
same value.. From this ve recognize that only poiterntial flows
can bg generated by any kind of pressure on the surface or by
setting in mectlon bodiea existing 1n the 1ieal fluid.

The consldsration of ocases ir which the line integral aif-
fers from’ z'ex;o, would bring us to the famous Helwboltz vortex
theory. We can nct howevér go further into this matter here.
We will only mention that there are motions in which the ohar-
acteristis cf the potential motion does not holid along certain,

mostly very resirloted, rogions in space. A line integral

yhose line exbraoces portions of this reglon, wlll then usually

"heve & value differing from zero. Ian such cases, we speak of a

vortex motion. The value of the line integral 1s called the
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nqiroulation," or, when applied toc the embraced vortex, also
te "sirengsh of the vortex.®
_ _ Until quite recently, 1% was thought necessary to draw the
oconolusion that vortex motions could only ocour in an ideal
fluid when they were préaent in it from the begluning through
some gort of ast of oreatlon, but that thelr production from a
condition of rest was impossible. It must not, howeQer, be for-
gotten that the ideal fluid 1s for us only & slmplified imagl-
nary image of a real fluild, which alweys exhibits some visoosity.
A speclal Investigation,* which we can not take up here in de-
+31l, ccmomnstrated that the viscosity of the fluld, even when
eéer so small, takes effect with finite strength in a reglon 1n
the lmuedlate vicinlty of the bodies, by holding back a thir
layer of the.flowing fluld. Kelvin's law wouiﬁ not Lold good
for any line drawn_fhrough this region, on acoount of the effect
of the vtaooe}ty. Ahy reglion of the fluld whose rartioles Lave
previousl&, during_thg.mption, come near the surface ¢f the ob-
ject, ocan therefofeubédome the seat of vortices. All vortex for-
mation in ‘flulds with small viscoslty 1s to be explalned in thie
néﬁner. vie shall aiso gee that, in a practically very lmporiant
case, tha theqietioal conception of vortex formation has brougkt
deolslve progress. .

Reguler vortioes are formed on shafp edges about which the
fluld flows. Even in the case &f perfeotly roundsd surfaoces,

like & sphere, for example, it happens after & pure poterntial

* S8se my lecture bsfore the Heldelbergsr Internationalen:Math-
- ematiker-Kongress, 1804 (Proceedings of this Congress, p.484,

Leipzig, 1905), or the article "Fliuesigrtetsvewegung," in "Hznd-
wlrterbuch dsr Naturwlssenschaften," p. 117,
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motion is created at the bsginning, that owlng t0 reverse no-
tions in the rear half of the surface layer, this lgyer boing
the seat of the friotion phenomena, portions of it are first
heaped up and Are then liberated into ithe f;ae fluld ag vorticas.
Hitherto it has not been poesible to assert much theoretiocally
ooncerning these vortices, which are olosely ocomnected with the
resistance to motion, Only concerning the preliminary condi-
tion for thelr creation, the reverse flow in the marglnal layer,
whioch causes the relecss of portions of this layer, 1t may be
stated that 1t is oomneoted with a retarded flow of the free
fluid along the wall, ard the detells of thls motion can be
quantitatively explained, (See H. Blasius, Z. F. YMath. u. Phys.
1808, p.1l, and Hiemenz, Dingl. Polytechn. Journal, 1911, p.331.)
It may be qualitatively explained in the following manner: The
same dlffarences in pressure, when great enough, turn back the
surface layer alreadr eomewhat retarded by frictlon. That this
ocauses an expansion of the surface layer 1is readlly seen from
Fig. 3, since there 1s no possilbllity cf escape for the reverase
flow inside the direct flow, Fig. 3 shows the inolplent forma-
tlon of a vortex. The quantitative results of these investiga-
tions are in accord with experience'(Hiemenz a. a. 0. and H.
: published by V.d.I.

Rubach, Mitteilungen uber Forschungsarbeiten,/No. 185, 1916, )y’

Karman (See Karman and Rubach, Physikalische Zeitschrift
1913, p.49) Las sucoeésesfully investigated the ocompleted vortices,
which, in the event of a uniform flow, show more or less regular
aeries of alternately right and left rotating vortices. He has
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shown %“hat only one kind of vortex configuration (Fig. 5) is
stable and that the reslstance may be quite accurately calculat-
. ed by means of.purely visuél observations, namsly, by méasuring
the intervals beiween the vortices and the frequonocy of the vi-
bratory motion, whersby the result of the calcu}ation'agrsegﬁ
well with the measured reaiafaﬁoee. The relation between tke
vortex sysfem and the dimensions of the vortex—éenerating'body.
which would have determined tke praocticel applloabllity gf'the
theory, has not yet been theoretically established.
Returning to ihe practically important probiem nf bodles

with small resistance, I would like to take up next the investi
gatlions on pirshlp bodies begun by my former coileague, Dr.
Georg Fuhrmann, who unfortunately fell in the war. -We must
first find formules for the alrflow about the body'of an air-
ship. If the flow 1s to be conasidered frém a stationary stand-
point.with relation to the airsh;p, we must seek the veloclty
distribution for which the veloolties are tangentia; to the
surface of the airship. We obtain this kind of flow when we
imegine the fluld combinued into the-inside of the alrship and
and adopt, on the front pc_ii-t_,ion of thts axis, points Where the
fluid is oontinﬁally renewed and, on the rear portion, corres-
ponding voints where the same quantities of fluid agaiA.disap—
pear. This flow is impossible in a physical fluid, but here
(since it only ooncerns the flow at points where there 1s really

no flow) it correctly represents the effect of the front part

PI
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of the airship, which decflsote the fluld ouitward or all eldes
and also the effect of ths Tser pamt; where the fluld agaln
flows together.— - ° - -

The mathematlcal fcrmuletioa cf such "sovrcoas" and "sinls®
is very simple. The prouoess of calculation would be very diffi-
oult,.if it were necessary, for a given alrship, to find the
correct distribution of these sources and sinks. Fuhrmann pro-
cseded in suck manner, however, that he calculated the outlines
of the body of an ailrshlp corresponding to sultable arbltrary
distributions of sources and slnks. He also caloculated the de-
tails of the flow and pressure. Conocexning the connection of
the pressure with the velocity of flow v 1in a potentlal motion,
the followlng may be noted. FThen the motion is steady, the
gtatic pressure p (that is, the pressure which would be re-
corded by an instrument moving with the flow) plus the "velooity
nressure” p %; forms a constant sum. The fvelboity pressura"
also oailed'*dynamio pressure" or "impaot pressure" 1s (as may
be concluded from the arplication of the above-mentioned rela-
tionship) equal to the pressure ihorease in comparison with the
statio pressﬁre, which appears in the openirg of & tube direct-
ed up-3tream against the flow. It is known that this relation-

ship 1s made use of for measuring flow velocltles. P = Y

g

"is here thae density of the medium.
The pressure diatribuxions ualoulated}by Fuhrmann were ver-
ified on bodies of the calculated shape by providing these bod-
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. 1es with perforations and measurirg the pressures ocourring in
the perforations. The results, for three of these vodies, are
glven in Figs. 4 t0.6, ths linssdenoting the salculated pressures
ard the small olrcles, the measured pressures. Ihe observation
ipdioateg on the front end a pressure lncrease equal to the dy-
némlo pressure of the artificial wind in which the experiment wes
performed. The calculatgd curve gives a like pressuie inocrease
on the rear end, which falls %o appear in the experiments. This
dliscrepancy results from the fact that in reality the flow et
the rear end does not close up compwletely, as is assumed in the
theory. This.ie because of the retardation of the marginal layer
of air due to a3kin friction. In other respeots the details of
the pressure distribution for alrship bodies of different shapes
agree very well with the theoxry.*

A practiocally very important result for the theory has been
obtained in the investigation cf air forces on airplsne wings.
The reasonlng processes invclved may be briefly desoribed here,
ttough in a manner not corresponding to theilr ﬁistorioal evolu~
tion. '

Vhen an aerofoil with a shape similar to & bird's wing ao-
quires & 1ift by moving swiftly through the air and 18 thereby
in position to sﬁpport the weight of the airplane, the alr re-
ceives a downward pressure equal to the weight supported. Con~
sldered in detail, e fin@ on the under side of tae aerocfoll,
increased pressure in compariscn with the pressure of the undis-

turbed ailr and a diminished pressure on the upper side. These

* The three small jogs in the lines rerresenting the measured
pressure distribution at 1/3 and 3/3 their length, are caused L;

dggggts in the construction of the thiree parts of the bullit—up
o] . ) .
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presaure differences, acting on the whole aerofoil taken togethus
nroduce the 1lifs.

""" In order to obbain information 5onoerning-the fiow relations
here involved, we will first sesk the value of the line integral
for a closed ourve, which passes through the field travsrsed by
the aerofoil. We shall find that the value of the line integrsal,
which we will eall the "oiraulation," generally differs Efrom Lero
If we consider a closed curve whioh passes downward through the
alr strlp traversed by the aerofoll and again rises in the undis-
turbed fisld, then before the passage of the asrofoll thiough

tke portion of space under consideratlion, the clrculation was
zero. During the passage of the aerofoll, we can {i1f we refrain
from unnecessary refinements) imagine the line out by the aero-
foll. Since the pressures are different on both sides of the
cut, the line integral will gradually increase (like a pipe {ill-
ed with stlill water, at the ends of whioh a differerce in pres-
sure 1s suddenly created) in proportlon to the increase in the
pressure differencs and to its duration. For a pipe of uniform
cross;seation, the line integral would be v1l. in which v 1is
the veloclty in the pipe and 1 thq length of the pipe. If the
density is p, a pressure difference of Py — P for the time

t 'produces a value of v1 of the amount




The same equation is also given by the striot taneory for the oir-

oculation in the free fluid. _ i
If the wiigchord ie s and the -fiigh'i; speed V, we have,
for the time ~ while the line is cut, the equation

"8 =VT, henog T ".‘%

For the circulation, we accordingly obtailn

p - -8 _ _(p-n)s
P p v

in which (p, - p,)s denotes the 1ift per unit length along the
wing, which we shall designate by a. We then have

a.=PpV...........(l)

a formla ii';dependently diacox;'ered by Kutta in Munioh and
Joukowskl in Moscow by different methods. DBut sinoce the line
can ba closed behind the wlng, the clrculation agaln becomes
const.a.nt é.nd is consequently the same for all partlcles of air
which have touched one and the same spot on the wing.

The 1ift density & 1is usually grsatest in the middle of
the —ving and drops to zero toward the engis, sinoe a{ the ends
the pressure differences are equalized around the edgea. What
is sald w:l.th regard to a also applies to the distribution of
the values of I', which correspond to the individual points of
the air strip touched by the wing. ‘This strip is aocordingly the
seat of vortices. The strength of the vc->:r.'tioes in any given’

strlp is measured by the ciroulation of a line encircling the in-
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dividual strip. Thls ciroulation is evidentiy ecual tc the

differencs in I' on the right and left of the stripn. TWe ttus

_ obtaln, espeoclally near the ends of the wings where I’ drope o

zero, relatively strong rotational motions in opproailte direc-
tions. .

If the small individual motlons of the vortices are neg-
lected, the geometrio configuratién of the vortex system is
fully known and we can therefore calculate the latter by means
of the geometrloal laws whlch oonnect the vortices wlth the
flow veloslitiss belonginé to them. The reliatlone are the sim-
plest when the 1ift density a and aleo the clroulationm I
are distrivuted accorcing to a semi—ellipse.on tke span of the
aerofoll (Fig. 7)., In this event, the velccity w, of the de-

soending flow behind the wing i1s constant ard

: r a 4 A
X R .o R A
T T Mo v (@)

in which A =7 bag s the total 1ift.

As a more thorough investigation shows, this descending
rotion 1s first partially developed in the place where the wing
is and it has, at the center of pressure of the coross-seoticn,
Just half of the above-given veloolty in the vortex tail.

In the following paragraph it will be further shown that
the theory is ocapable of determining the potential flows around

" the wiﬁg sebtions and of explaining all the detalls whioh give

rise to 1lift. These flows are definitely conneoted with a cir-
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culation around the wing sectlion, of exactly the amoiunt obtalned
couve in araation 1. Aocording to our reasoning, this 1s correct
since we can close togethexr ths line paesing through the strip
touoched by the alr behind A wing element, so that it embracee

the wing seotlion in 1lts plane. From the above-mentioned theory
of wing flow, which is oconnected witn the i1deal case-of an infi-
nitely broad wing and hence of qniform flow, thé result is to be
antiolpated that it will offer no resistance in the direction of
motlon, but only develiop a 1lift perpendiocular to it. We express
thls result rnow by saying: "From the circumstance that the 1lift
drops to zero toward the ends of the wings, we have (in additiox
tc the former flow velocities, which were present sven for infi-
nitely wide wings) a downward motion at the rlace where the wing
-is, througlh whose 1nfluence the whole flow, in comparison with
tkat of_an infiniteliy wids wing, 1s inclined somewhat downrard
and indesd roughly about the value of the angle obitained from
the equaticn. " :
1/8 w, 3 A (3)

t = = = ] . . . . . . -
gP = T T onve

Eence the 1ift of each wing element will no longer be vertiocal,
but perpendiocular to this inclined direction and the flow will
therefore offer a resistance or drag compoﬁent of the value
H]
Wi = A sir zA t = - {'_" - - . . - "« e (4)
3 e _ _.2__5n 0T D

At the same time, the necessary angle of attack for obtair-

ing a csrtain 1ift density must be increased by B, in compari-
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son with the infinitely broad wing. The reslstance Just men-
tioned vhioh, aoccordiang to equation 4, 1s prororilonal to the
squars of the mesan l1lift density %, doss not st in contra~
diction to‘the assumed absenoe of friction in the medlum, slnce
1% has 1ts exact equlvalent In the klnetio energy left in the
medlum in the vortex wake behind the wlng.

It has now besn stown that, with the ald of the oaloulations
Just Indlcated on Infinltely long wings, we can fully explaln
the hltherto very enigmatical great influence of the aspect ratio
of the wings on thelr serodynamic behavior. If we take the rs-
sults of more recent meesurezents on a series of asrofolls of
uniforn crose—sectlon, but dlfferent asprect ratlio, as obtalned
from modern laboratories, and aubtract the above-~given theoret-
ical drag from the measured drag, we find tkat the remaining
drag, in relation to tre 1ift per unit of surface -%E, is al-
most exactly the samz for the differsnt experiments and that con-
gequently this remalning drag 1ls no longer dapencdent on the as-
peot ratio. The same holds true for the argle of attack of in-
finitely broad wings celculisted in the above-glven mannsr. On
the other hand, both the remaining drag and the angle of attack
of an infinltely broad wing are dependent on the wing sectlon.,
For this reason, ?he remaining drag has »een ocalled the sectlon-
8l dreg. It is readily seen that, with the aid of these formuies,
we can convert the sxperimental results obtained wlth one aspect
ratio, to any other aspect ratio, so that 1n *he future it will
sufficed to make orly ore sxperiment with only one aspect ratio.
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The results of this method &re shown by Figs. 8 and 9, whiloh have
" been taken from the "First Heport of the Gottingen Aerodynamic
Laboratory“ ("Ergebniase der aerodynamischen Versuchsanstalt zu
GSttingen, I. Lieferung," published by R. Oldenburg, Mumich,
1931). On one side is shown 1ift and drag* for a series of aero-
foils with different aspeot ratlios, presented according to meas-
urements; on the other side, the conversion to the aspect ratlo
1l : 5. The conversion of the angles of attack ylelds & like
good agredtment. The experimental values, which correspond to &
square aerofoll, do not, it 1ls true, fall in line, bﬁt thils 18
not strange, since the theory under conslderation 1s only a fiuist
approximation for very long surfaces. It is, on the contrary,
an unexpected result that it still holds good for an aspeoct
ratio of 1 : 3.

The theory hLas also been applied to biplanes and multiplanes.
(See report in "Jahrbuoh, 1920, der Ges. f. Luftfahrt," p.37,
where further information is given. From what is given thers,
may be found an intimation of a noteworthy rssult which bears
upon that distfibgtipp of the 1lift, on an aerofoll of any de-
sired sha?é:bf‘qébn e group of such aerofoils, which glves thg
minimum theoretioal drag for a given total value of the.lift.
Dr. Max Munk's soluiion of this problem reads: "Let us imagine
the space traversed by the.group of aerofoils (khence a strip, or

8 _system of strips, running along the flight path) as a rigld

. G% and G¥ (in Figs. 8 and 9) denote the 1lift and drag coeffi~
f

cients (L1 grag divided by the surface area and dynamioc
pressure 1/3 p'V
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formation and let us set thla ih motion in an ideal fluid with &
uniform veloecity at all points, in the oppousiie direotlon to the
11, 'The remiliing flow is the desired vortex motion and the
distribution of the pressure at the moment of starting gives the
desired 1ift distribution. For a monoplane, we thus obtalan the
above-mentioned slliptical distribution, the veloalty of the
rigld formation being w, according to equation a."

In a final varagraph, we shall state briefly & theory of
aerofoll sections which has to&ay been developed to a high degree
of: perfection. The problem may be simplified by assumling the
flow to be uniplanar or "two-dimersional." This means that the
path of each alr particle desoribes a uniplanar curve and that,
in all parallel planes, the same phenomena ocour. This 1s the
case, 1f we imagine an aerofoil of coustant cross-seotion infi-
nitely extended laterally, so that every disturbance coming from
the endm of the aerofuil (tending to make the flow spatial) is
eliminated. |

Yor the uniplanaf rotentlal flow. there lu an especially
efficaoious and sultable method, the "method of orthomorphic o
conformal transformatlion. It shows that, if ;B.have any uni-
planar potential fléw; wo can derive other uniplanar flows frou
1%, by subjeoting the plane of the.diagram to those transforme -
tions for whioch its omellsst geometilo partas Temaln similar ox
equl -angular., Through suck an equiangula: or conformal transfor-
mation, whHidh oau be applied several times in a series, nearly

all imaginable unliplanar flows can be mathematically represented
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Figs. 10 and 11 present the most common trensforration in the
theory of wing seotlions, by which a olrocle is transiormed to a
5%151355'11ﬁé' Aﬁ,ulfhé sﬁfiaﬁhﬁiné'éiroleé to confooal ellipsas
and the radll to hyperbolas.

We have long known the potentlal flow about a oylinder,
whioh, like all such flows, generates nelt:ier 1i1ft nor drag.

I+ has been known, however, sinoce the time of Lord Raylelgh
(Kessengsr of Math. VII, p.14, 1877, Se. Papers I, p,343) that
a 1lift Je generated, if a oiroulatorf motion 1s superposed on
the previously known motion. The flow thus obtalned glves a
streamline formatlon 1liks Fig, 13. The above-mertloned trans-
formation was applied firet by Eutta (Illuetr. asronaut. Mittell-
ungen, 1502, p.133), who let the dlameter AB coinoide with a
chord drawn tkhrough the "rest-point" Q and thus obtalned the
rZow around a flat or cambered plate. Later Jovkowskl found
that very beautiful sectlions, simllar to blrds' wings, were ob-
tained by giwlquthé diameter AB the position indicated in
Fig. 13. Fié.:ls saows such a wing section with the resultant
streamlines.

Thls wing-sectlon theory - which has, 1n recent times,
been much further developed (See Zeltschrift fur Flugtechnik
1818, p.111, Karman and Trefftz, 1917, p.1E?7, and 1920, p.68,
Mises, 1931, .Gackeler) and now renders i yossible to oaloulate,
for almost any given wing seotion, not onliy the value of the
11ft and the location c¢f the center of preesure, BHut also the
pressure distribution in detall - agrees elso with the experi;
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ments as well as oan be expeocted, oonhidering that the friotfon
is neglected. Fig. 14 shows (acoording to measurements by my
co~worker, Dr. Betsz, on a Joukowskl wirng section) the dependence
of 1ift and drag on the angle of attaock. .In the fleld within
whioh the wing section is "good" the theoretloal -and experimen-
tal ourves run nearly parallel at a distance determined by the
friction. The pressure distributlons (Figs. 15 and 16) likewise
agree well on the whole. The vprincipal 59v1ation proceeds from
the faot that, due to friotion, the theoretical ciroulation for
the individual angles of attack ie not fully attained_in practice.

In summing up, it may be said that thae hydrodyaamic theo-
ries are best confirmed by experimental resulys.for bodlies with
small resistance or drag and can aocordinglj:be used Iln place of
experimental tests. T

It is evident that the theoriles here.brought forward can
aleo be applied to other technical phenomaﬁa. Thus their appli-
oatioﬁ to airora&t propeliers is already settled in principle*
but muet be investigafed further as %o detalls. For their trans-
fer to turbines and pumps, there is the difficulty that our cal-
oculations heve in part assumed the adortion of amall vélocity
changes .and small angles of deflection. Useful results may be

- expected fror the above, especlally for mackines like "Kaplan

* A. Betz, "Screw Propeller with Minimum Loss of Fnexgy," with

an appended note by L. Prandtl, Nachrichien von der Gesellschaft

der Wissenschaften zu Gottingen. Math.-Phys. Klasae 1919, p.193.

Further, A. Betz, "The Principle of the Screw Propeller" (Die

§°rg§§5° beim Sorraubenpropeller), "Naturwissenschaften," 1931,
O. [ ]
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wheels," rotary shovels, eto. -The calculations are at present
insuffioclent for other xinds of turbines. but even Lere advani-
ages ocan be drewn from the fundamental princirles.

Translated by the ilationel Advisory Committes for Aeronautios.
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